
xpkdisk

xpkdisk ii

COLLABORATORS

TITLE :

xpkdisk

ACTION NAME DATE SIGNATURE

WRITTEN BY January 31, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

xpkdisk iii

Contents

1 xpkdisk 1

1.1 xpkdisk.guide . 1

1.2 xpkdisk.guide/Overview . 2

1.3 xpkdisk.guide/Requirements . 3

1.4 xpkdisk.guide/Usage . 3

1.5 xpkdisk.guide/Installation . 4

1.6 xpkdisk.guide/Mountlist . 4

1.7 xpkdisk.guide/Preferences . 5

1.8 xpkdisk.guide/xdPrefs . 6

1.9 xpkdisk.guide/File Format . 8

1.10 xpkdisk.guide/General Usage . 8

1.11 xpkdisk.guide/Upgrade . 10

1.12 xpkdisk.guide/Disk Optimizers . 11

1.13 xpkdisk.guide/Free Space Recovery . 12

1.14 xpkdisk.guide/format of the bitmap . 13

1.15 xpkdisk.guide/Partitioning . 13

1.16 xpkdisk.guide/Limitations . 14

1.17 xpkdisk.guide/Implementation . 14

1.18 xpkdisk.guide/License . 16

1.19 xpkdisk.guide/Index . 16

xpkdisk 1 / 18

Chapter 1

xpkdisk

1.1 xpkdisk.guide

xpkdisk.device

This file documents xpkdisk.device 37.8.

Copyright (C) 1993, 1994, 1995 by Olaf ’Rhialto’ Seibert.

Permission is granted to copy the whole package, in accordance with
the GNU General Public License, and some additional restrictions.

Overview
What is in the package?

Requirements
What else do you need?

Usage
How do you use it?

Limitations
What does it not do?

Implementation
Interesting things to know.

License
What you may do with it.

Index
Where to find what in this manual.

xpkdisk 2 / 18

1.2 xpkdisk.guide/Overview

Overview

xpkdisk.device is an exec-style device that looks like
trackdisk.device and similar disks. The difference is that it compresses
its data and stores it in multiple files in an existing filesystem.

* Version 37.8 works around a horrible bug that is really caused by
XPK when track files are not compressible. Look in the source
file devio.c for details, near the symbol XPKBUG.

The bug was pointed out to me by Ulrik Jensen <uj2001@hdc.hha.dk>.

* Fixes a bug in xdClear which assumed that all partitions started
at track 0.

The bug was pointed out to me by Michael Barsoom
<mbars@bluejay.creighton.edu>.

* You can now change the XPKD: assign on the fly, if you’re
careful
.

* xdClear now works with the fake scsi.device, which does not seem to
know about ETD_* commands.

* Now keeps the old track file while writing a new one. The old
track file is only deleted after successfully writing the new one.
You have more control about what to do in such situations.

* Now includes a utility to reclaim space from deleted files.

* Now uses a hierarchical track naming scheme for faster access!
See

Upgrade
on what to do if you are upgrading from the old naming

scheme.

* Now behaves better in case of threatening lack of disk space.

* Now handles read-only media.

It uses the XPK (eXternal PacKer) standard to do the actual
compression. This has many advantages:

* You can choose which compression is most effective for your
purpose. For one disk, you might want a very tight compression
that is slow, for another you may prefer a faster but less
efficient compression.

* As soon as another XPK library is released, you can use it for your
compressed disk(s).

* Because each track is a standard XPK-compressed file, you can use

xpkdisk 3 / 18

the normal XPK utilities to uncompress your data, should you wish
to do so.

* You can change the compression type of a disk on-the-fly. All
already compressed data remains perfectly usable, but upon
re-compression your new choice will be used.

* You can even manually decompress and recompress your disk (when
xpkdisk is not accessing it, of course) with another compression
method.

1.3 xpkdisk.guide/Requirements

Requirements

What you further need is the XPK user package. At the time of this
writing, version 2.5 is current, and can be found (at least) on aminet
ftp sites under the name Xpk25Usr.lha. This package contains the
necessary libraries for using the programs.

Running xpkdisk.device probably needs lots of processor cycles and a
hard disk to be enjoyable in any real sense. If you only have an
unaccellerated Amiga, you should probably stick to the faster (and thus
less-efficient) compressing methods.

xpkdisk.device runs under Kickstart versions 1.2 and higher, but the
fancy preferences program xdPrefs and xdClear require 2.04 or higher.
Some other features are also non-functional under 1.2/1.3.

If you want to recompile the source, you also need the XPK
developer’s package, named Xpk25Dev.lha.

1.4 xpkdisk.guide/Usage

Usage

Installation
Where to put what.

Preferences
How to tune the operation of xpkdisk.device.

General Usage
Some usage info.

xpkdisk 4 / 18

Upgrade
How to upgrade from a previous release.

Disk Optimizers
Hints when you wish to optimize the disk

structure.

Free Space Recovery
How to recover space from deleted files.

Partitioning
How to partition an XpkDisk.

1.5 xpkdisk.guide/Installation

Installation
============

Installation can be performed by the Installer, or you can do it by
hand. In that case, you must carry out the following steps.

1. First, you need to copy xpkdisk.device to your DEVS: directory. On
my system, I would keep it in LOCAL:devs, and DEVS: is a
multi-assign pointing to SYS:devs and LOCAL:devs.

2. Then, you need to create a
Mountlist
entry and add it to your

DEVS:Mountlist file. An example in the 1.3 style is given.

3. Finally, you need to make an assignment XPKD: to a directory where
you want the compressed disk to be stored. xpkdisk.device will
create subdirectories as necessary.

4. Before the first use you must format the disk. The following
options are recommended, as far as they are available in your
system version:

Format drive XD0: name Compress0 QUICK FFS DIRCACHE

1.6 xpkdisk.guide/Mountlist

Mountlist

/*
* XpkDisk Partition: Unit 0, Size 1 Mb

*/

xpkdisk 5 / 18

XD0:
Device = xpkdisk.device
Unit = 0
Flags = 0
Surfaces = 1
BlocksPerTrack = 64
Reserved = 2
Interleave = 0
LowCyl = 0 ; HighCyl = 31
Buffers = 20
BufMemType = 1
DosType = 0x444F5301
Mount = 0

#

The important parameters are:

Unit
This is your choice of the xpkdisk unit. Since there are 8 units,
you can use values from 0 to 7.

BlocksPerTrack
This is used by xpkdisk.device to determine how large the chunks of
compression should be. So in this example with 64 blocks per
track, the disk is compressed in chunks of 32 kilobytes each.

LowCyl, HighCyl
This determines the size of your compressed disk. It is not
necessary that LowCyl equals 0. The disk size in bytes can be
calculated with Size = 512 * BlocksPerTrack * Surfaces * (HighCyl
- LowCyl + 1).

DosType
A DosType value of 0x444F5301 specifies FFS. If you have it, DCFS
is probably better.

The other parameters are simply the same values that would be used
for "normal" disks.

1.7 xpkdisk.guide/Preferences

Preferences
===========

Unlike xpkdisk.device, the preferences program (xdPrefs) requires at
least system 2.04.

xdPrefs
Nice user-interface.

File Format
How to set your preferences "by hand".

xpkdisk 6 / 18

1.8 xpkdisk.guide/xdPrefs

xdPrefs

The xdPrefs program (1) opens a window when started from either the
Workbench or the Shell. No special Workbench processing takes place, so
ToolTypes have no effect.

All settings that can be changed with xdPrefs may be changed at any
time during operation of xpkdisk.device.

There are several gadgets and menus available.

Unit
This slider determines which unit you are seeing and setting. If
you drag it before clicking on either Save or Use, your settings
will be lost.

Save
Saves the currently visible settings in the permanent settings
file. This file is located in the XPKD: directory. It also implies
"Use". It does not quit the program.

Use
Saves the currently visible settings in a temporary settings file.
This file is located in the ENV: directory. The unit is notified
that it should re-read its internal settings. It does not quit the
program.

Quit
This button does quit the program (and so will the close gadget).

The reason that these three functions are separate is that I hate
the fact that usually "Save" and "Use" imply "Quit". Especially
here, when you may want to change the settings of several units in
one go.

Compression
This string gadget allows you to specify the compression you’d
like to use. This string should be in the standard XPK format of
ABCD(.nnn): a four letter name, optionally followed by a period
and a number from 0 to 100 to specify the efficiency.

Watch out: it allows you to specify compression methods that are
not (currently) available. In that case, no compression will be
used. You will get annoying requesters about XPK errors -15
(XPKERR_MISSINGLIB).

Timeout required
This item is the first of the 3 gadgets relating to
xpkdisk.device’s behaviour when faced with the option of

xpkdisk 7 / 18

compression its internal buffers. Every time a modification is
made to the internal buffers, a timeout is restarted. When the
timeout expires, it is examined whether it is appropriate to do
the compression.

Checking this option means that the compression will not be done
unless the timeout has expired.

Time
This slider determines the time used for the timeout of the
previous gadget. The actual timeout will be between this value
and half this value, depending on the actual sequence of events.

CMD_UPDATE required
Normally, a filesystem sends CMD_UPDATE commands to xpkdisk.device
if it has completed its current operations. Every time such a
command is received, it is examined whether it is appropriate to
do the compression.

Checking this option means that the compression will not be done
unless this command has been received.

There are several combinations possible of Timeout and CMD_UPDATE.

None checked
Compression will be done every time a CMD_UPDATE command is
received, and every time the timeout expires. In this case it
is probably best to take a long timeout, unless the overlying
program is lax about sending the CMD_UPDATE commands.

Only Timeout checked
Compression will be done every time the timeout expires.
CMD_UPDATE commands are effectively ignored, since the
occurrence of the timeout leaves no work to do for the
CMD_UPDATE.

Only CMD_UPDATE checked
Compression will be done every time a CMD_UPDATE command is
received. Timeouts are effectively ignored, since the
occurrence of the command leaves no work to do for the
timeout.

Both Timeout and CMD_UPDATE checked
This is the default case. It means that even when a CMD_UPDATE
command is received, compression is delayed until the timeout
expires. Not usually, the timeout could expire first, in
which case the CMD_UPDATE command will be waited for.

This is convenient in case new disk operations occur soon
afterwards, which is often the case.

To recapitulate: There are two occasions at which compression is
considered: after a timeout, and upon receiving a CMD_UPDATE. Both
events are noted, and then it is determined whether all required
events have happened. If so, compression takes place (and the
events are cleared). If not, no further action is taken at that
time.

xpkdisk 8 / 18

Safe write
This enables the use of the ripcord (see

General Usage
).

Cache size
This is the highest number of tracks that xpkdisk.device will keep
in memory. Setting this to a higher value usally increases speed,
but at the cost of (by default) 32 kilobytes of memory per track.
If there are already the maximum number of tracks in memory, and
access to another track is requested, one of the current tracks is
selected to be replaced, compressing and writing it to disk if
necessary.

---------- Footnotes ----------

(1) xdPrefs requires system 2.04 or newer.

1.9 xpkdisk.guide/File Format

File Format

The file XPKD:XpkDisk<unit>.prefs that is produced by the preferences
program looks like

CMDUPDATE=1,DELAY=1,SAFE=0,CACHE=8,TIME=5,METHOD=BLZW.100

These are the default settings, and correspond to the settings of the
gadgets with similar indications.

It must be a single line of text, with the items separated by a
comma.

The order in which the settings are given is not important, but the
full name is: no abbreviations are possible.

Refer to the previous section for a detailed explanation of all
items.

1.10 xpkdisk.guide/General Usage

General Usage Information
=========================

Once you have mounted your compressed disk, you can use it as a
normal AmigaDOS harddisk.

xpkdisk 9 / 18

Disk-full handling

There is a provision for disk-full conditions of the underlying file
system, but this can’t be perfect. This means that disasters may still
happen if you make your compressed disk too large for the space that is
actually available. This is only functional if you checked "Safe write"
in the xdPrefs program.

If for any currently in-use unit the "Safe write" option is checked,
xpddisk.device creates a "ripcord" file (XPKD:Ripcord) that has at
least the size of two uncompressed tracks. Every time a track is
written out, the available size on XPKD: is checked. If it falls below
the same threshold (two uncompressed tracks), a warning requester is
put up if you are running 2.04+. It gives you the following options:

Rip Cord
The file XPKD:Ripcord is deleted, in order to make space, and the
operation proceeds. This option is always chosen under 1.2/1.3.

Try Anyway
The operation proceeds regardless of the little available space.
This may cause the write to fail.

Abort
The operation is aborted: the track is not written out.

When the track is not written, or when an error occurs while trying
to write it, the track is kept in memory, even if this means that huge
amounts of memory will be used. It is also remembered that it needs to
be written, so that retries will occur.

Also, xpkdisk will report a write error to the upper file system.
Hopefully, this will only affect the file you are currently writing, but
you may have a stroke of bad luck.

This means that as soon as you get the requester, you should abort
whatever program is writing to the compressed disk. The spare space
from the ripcord should allow the file system to keep its directory
information consistent, but if you let the writing continue there will
not even be space for that and you may end up with a corrupted file
system anyway.

If aborting the writing program won’t work, or not quick enough, the
following strategy may limit the damage done. The first few times,
click on the "Abort" button. This will (hopefully) propagate an error
condition from xpkdisk.device, through the file system, to the
application. When the application aborts, and the file system is
cleaning up, click on "Try Anyway" or "Rip Cord".

If you are using 1.3, the choice "Rip Cord" is always made for you.

Trackfile write errors

Regardless of the above, if there is an error detected when writing a
compressed track, two corrective actions are taken. First, it is tried

xpkdisk 10 / 18

to write the track uncompressed. If for instance the disk is full, this
is not likely to help, but it might be useful when you are low on
memory. If this still does not work, a requester is put up, offering a
choice between "Retry", "Revert to old" and "Abort". As long as you keep
selecting Retry the process is started again. This allows you to free up
memory and/or disk space to enable the writing to proceed successfully.

If you select "Cancel", then the old version of the trackfile is
left, with an extension of ".old", because the new one is most likely
unusable.

If you select "Revert to old", the old trackfile is left with its
original name.

Read-only disks

If the underlying filesystem is read-only, then the compressed disk
will also be read-only. If the read-only status changes, you may need
to give a DiskChange command for the compressed disk, so that the file
system will re-examine the disk.

Compressed floppies

Compressed floppy disks are currently not very practical, but they
may be possible if you use a non-binding Assign for XPKD:, i.e.

Assign PATH XPKD: DF0:

However, you can then use only one unit, and you have to be very
careful to do a DiskChange XD0: every time you swap floppies.

1.11 xpkdisk.guide/Upgrade

Upgrading from a previous release
=================================

If you want to upgrade from a previous release that didn’t have the
hierarchical track naming scheme yet, the program xdName will be useful
to you.

First, determine the highest track number that needs to be converted.
To be on the safe side, use the value of HighCyl from the Mountlist,
but you can also use the highest number that is actually in use.

Then, in the Shell, use the command

xdName track >script

where "track" is the track number you determined. This will create a
script that will create the necessary new directories and rename all
tracks. Then execute this script to do the actual conversion. You
don’t need to keep the script around:

xpkdisk 11 / 18

execute script
delete script

Should you wish to convert back, use the -r flag. If you just want
to know the file for a certain track, use xdName -n track.

1.12 xpkdisk.guide/Disk Optimizers

Disk Optimizers
===============

If you wish to use a disk optimizer (also called defragmenter), you
can do this if you take a few precautions. I have personally used ReOrg
with success, so the hints below are biased for ReOrg.

* Set the number of cached tracks very low, such as 1 or 2. The
reorganizer will usually have a cache that is more effective for
its specific purposes.

* The reorganizer should have a setting that keeps it from using all
system memory. Set this amount to 300 - 400 kilobytes more than the
normally recommended setting. This is because many of the xpk
compressors use relatively a lot of memory. You should consult the
compressor libraries documentation to check its memory usage if
you want a lower setting.

* If the reorganizer is of the "safe" type (that moves only a few
blocks at a time to keep a consistent disk structure), then it
will not use all system memory for itself. In that case you can
allow a larger xpkdisk cache. In fact you’ll probably have to do
this to prevent trashing.

* If there is still not enough memory to compress, you will get an
alarming requester with xpk error messages. In this case the track
will already be written uncompressed, so there is usually no real
danger to ignore the situation. However, you should verify this
from another Shell window or the Workbench. Also, if you
reorganize your whole disk this way it will be decompressed
entirely, which is probably not what you want.

* Don’t set any option to clear unused blocks. It is usually better
to use xdClear for that purpose afterwards.

* During compression the compressed disk may take more space than
before or afterwards, especially if the reorganizer decides to
move lots of blocks to previously unused tracks. The worst case (a
half full disk being moved completely) could temporarily take
twice as much space as before.

* A time-remaining indication by the reorganizer will not be very
reliable at first since decompressing tends to be much faster than
compressing for most methods.

xpkdisk 12 / 18

1.13 xpkdisk.guide/Free Space Recovery

Free Space Recovery
===================

or, On A Clear Disk You Can Seek Forever...

The normal Amiga filesystem does nothing special with files that you
delete. The only thing it does is unlink the file from the directory
structure. The advantage is that you can recover the file if nothing
new has been written over it.

The disadvantage of this is that if you delete a file, your disk
does not shrink.

To overcome this little problem, I have written a program, called
xdClear (1), that fills all unused sectors on the disk with zeros. The
theory is that whole lots of zeroes would be very compressible and
therefore reduce actual disk space usage to a minimum. Additionally, if
it is used on an xpkdisk, if a whole track is not in use it deletes the
file containing it, thereby eliminating all disk usage for that track.
xdClear only works if you are using the normal Amiga filesystem.

Usage: xdClear <devicename>

for example xdClear XD0. You must give the device name, not the volume
name. It does not matter if you include the colon (:) in the name.

xdClear checks the bootblock for a value of "DOS\?", where \? may be
anything, it calculates which block is supposed to be the file system
root block, checks if its type is correct, checks the checksum, and
finally sees if the bitmap is indicated as "valid".

xdClear scans the bitmap present on the indicated device, one track
at a time. If a whole track is being unused, and the device is
xpkdisk.device, then the the track file is deleted. Otherwise, the
unused sectors are filled with zeroes. This is only written back to the
disk if the sector wasn’t all zeroes to begin with. This should save a
lot of compression effort in case the disk was relatively clean already.

Since the
format of the bitmap
should be, but isn’t, documented in

the AmigaDOS manual, I had to reverse engineer this. I have tested this
with the most complex bitmap structure possible according to what is
being documented with a 10000-track (312 M) compressed disk. After I
did this I compared my results with Ralph Babel’s excellent "The Amiga
Guru Book", and fortunately they matched.

---------- Footnotes ----------

(1) xdClear requires system 2.04 or newer.

xpkdisk 13 / 18

1.14 xpkdisk.guide/format of the bitmap

Format of the bitmap

This is an addition to the information on pages 336-338 of the 3rd
edition of "The AmigaDOS Manual".

"Bitmap Block"

0: Balance to 0 checksum
1..SIZE-1: Longwords of flags indicating "available" (1),

or "in use" (0) for each block.
The bit for block #n is in longword 1 + n/32,
bit number n mod 32 (bit 0 is the lsb).

The first 25 bitmap blocks are recorded in the root block, at
longwords SIZE-49 .. SIZE-25. With the FFS, if more bitmap blocks are
needed, they are recorded in a "bitmap extension block". The key of the
first bitmap extension block is stored in rootblock longword SIZE-24.

"Bitmap Extension Block"

0..SIZE-2: Sector numbers (i.e. keys) of bitmap blocks,
or 0 if nonexistent.

SIZE-1: Sector number of next bitmap extension block,
or 0 if nonexistent.

Note that bitmap extension blocks don’t have a checksum.

1.15 xpkdisk.guide/Partitioning

Partitioning
============

You can, if you wish, put multiple "partitions" on a single XpkDisk
unit. This might be useful if you think that 8 units isn’t sufficient
for your needs. Of course, all option settings will be the same for all
partitions.

Basically, the same rules apply as for partitioning real disks, with
the following extra rule:

* For real disks you can usually cheat with the disk geometry. As
long as you make sure partitions don’t overlap you can claim
different values for

BlocksPerTrack

xpkdisk 14 / 18

and
Surfaces
for different

partitions. Not so for XpkDisk. All partitions on a single unit
must have the same values for these parameters.

There is not even a reason why you should start your first partition
with track 0, apart from the disk usage of unused "Group_????_??"
directories.

1.16 xpkdisk.guide/Limitations

Limitations

* There is a provision for disk-full conditions of the underlying
file system, but this can’t be perfect. This means that disasters
may still happen if you make your compressed disk too large for
the space that is actually available. This is only functional if
you checked "Safe write" in the xdPrefs program. (See

General Usage
and

xdPrefs
.)

* There are only 8 units available. Since each unit in general
requires a lot of cache memory, this should be plenty. However,
nobody keeps you from using multiple

partitions
per device. Keep in

mind then, that you need to have the same track size
(BlocksPerTrack) for all partitions.

* When a unit of xpkdisk.device is opened, it scans the list of
mounted devices to find out its track size. It just looks for its
name and unit number and uses the first match. If not found, the
track size defaults to 64 blocks. This means that if you ever
intend to use a different track length for a unit, it must always
be mounted before accessing it.

This is not so bad as it seems, because specifying Mount = 0 costs
almost no memory.

1.17 xpkdisk.guide/Implementation

Implementation

xpkdisk 15 / 18

How are all the tracks stored?
==============================

Since version 37.3, each track of xpkdisk.device is stored in a file
with a name like XPKD:Unit1/Group_0000_HL/Track_001d_KE.

Why such a funny name? That is simple: names like these minimise the
number of disk accesses needed to find the file. For example, the file
header of this file can be retrieved in exactly 3 disk accesses. The
same is true for all other tracks (as long as you have at most 72 * 72
= 5184 tracks; this equals 162 megabytes of uncompressed disk space).
This works as follows.

Each unit of xpkdisk.device changes it current directory to
XPKD:Unit<number>. Then, when this track is requested, AmigaDOS looks
up directory Group_0000_HL. These directories each group (at most) 72
tracks, and as long as there are at most 72 directories, all
directories have the a unique "hash value". Each directory block can
store 72 pointers to contained files or directories, and the hash value
determines in which of these slots the pointer should go. So if each
track hashes uniquely, this means that the directory block can be found
in a single disk access. (If the file or directory found at the
location in the hash table is not the desired one, a chain is followed
which means more disk accesses are needed.)

The number in the directory name is the hexadecimal representation of
the first track in it.

The same is true in each directory: the names of the tracks are
constructed such that each has a different hash value. In fact, the
hash values in each directory neatly range from 0 for the lowest track
to 71 for the highest track.

Compare this with the old situation (in version 37.2), where all
tracks were stored in a single directory. Even if you have a modest
disk of 20 megabytes, this means there are 640 tracks. On average, this
would mean that 640 / 72 = 9 tracks would hash to the same hash table
entry, which in turn would mean 1 + 4.5 (average) accesses to find a
track, and 1 + 9 accesses worst case.

In reality the worst case was even worse, since the hash values were
not evenly distributed. The longest hash chain would be 13, and the
shortest 4. This makes the worst-case number of accesses 14, which is
pretty bad.

This improvement in access speed comes at a small price: one extra
disk block per 72 tracks: 9 extra blocks in the example 20 M case.

A note on track size
====================

Since file header blocks can store pointers to at most 72 data
blocks, it is recommended that you make tracks not larger than 71
blocks. This leaves one block for expansion of uncompressible tracks.

CMD_RESET

xpkdisk 16 / 18

=========

The CMD_RESET standard device command is used by the preferences
program to let the device know to re-initialise the settings.
Additionally, the current directory (XPKD:Unit0-7) is re-established,
so you can change the location of your tracks on the fly. For this to
work, the cached tracks are pushed first. It is highly recommended
that you perform a DiskChange command both before and after such a
trick.

1.18 xpkdisk.guide/License

License

Xpkdisk.device is Copyright (C) 1993, 1994, 1995 by Olaf Seibert.
All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The Licence (see the file COPYING) does not specify limitations on
copying fees; the specification shall be that xpkdisk.device may not be
distributed in a commercial package of any kind, including disks sold
by pd/freeware/shareware resellers charging more than $6 or DM 10 per
disk, without my written permission.

1.19 xpkdisk.guide/Index

Index

bitmap, Format of the
format of the bitmap

BlocksPerTrack
Mountlist

xpkdisk 17 / 18

Cache size
xdPrefs

CMD_UPDATE required
xdPrefs

Compression
xdPrefs

Copying
License

Disk Optimizers
Disk Optimizers

Distribution
License

DosType
Mountlist

File Format
File Format

Format of the bitmap
format of the bitmap

General Public License
License

GNU General Public License
License

HighCyl
Mountlist

Implementation
Implementation

Index
Index

Installation
Installation

License
License

Limitations
Limitations

LowCyl
Mountlist

Modification
License

xpkdisk 18 / 18

Mountlist
Mountlist

Overiew
Overview

Partitioning
Partitioning

Preferences
Preferences

Recovery of Free Space
Free Space Recovery

ReOrg
Disk Optimizers

Requirements
Requirements

Ripcord
General Usage

Time
xdPrefs

Timeout required
xdPrefs

Unit
Mountlist

Upgrade
Upgrade

Usage
General Usage

xdClear
Free Space Recovery

xdName
Upgrade

xdPrefs
xdPrefs

Xpk25Dev.lha
Requirements

Xpk25Usr.lha
Requirements

	xpkdisk
	xpkdisk.guide
	xpkdisk.guide/Overview
	xpkdisk.guide/Requirements
	xpkdisk.guide/Usage
	xpkdisk.guide/Installation
	xpkdisk.guide/Mountlist
	xpkdisk.guide/Preferences
	xpkdisk.guide/xdPrefs
	xpkdisk.guide/File Format
	xpkdisk.guide/General Usage
	xpkdisk.guide/Upgrade
	xpkdisk.guide/Disk Optimizers
	xpkdisk.guide/Free Space Recovery
	xpkdisk.guide/format of the bitmap
	xpkdisk.guide/Partitioning
	xpkdisk.guide/Limitations
	xpkdisk.guide/Implementation
	xpkdisk.guide/License
	xpkdisk.guide/Index

